Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Environ Res ; 96(2): e11004, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38369667

RESUMO

Microbial communities living in different environments can affect the transformation of nitrogen and phosphorus in sewage pipes. Two different environments were simulated to investigate the differences in the transformation of nitrogen and phosphorus under different microbial communities in the pipe. Results showed that the concentration of nitrogen and phosphorus changed greatly in the first 25-33 days and the first 21 days, respectively, and then remained stable. The decrease in amino acid nitrogen (AAN) concentration and the increase in ammonia nitrogen (NH4 + -N) concentration in the sediments were evident in the contrast group. The concentrations of total phosphorus (TP), dissolved total phosphorus (DTP), and dissolved reactive phosphorus (DRP) in the overlying water and interstitial water decreased, and that of TP in the sediment increased. Some microorganisms in the sediments of both groups are related to the transformation of nitrogen and phosphorus, such as Clostridium_sensu_stricto_1, Sporacetigenium, Norank_f__Anaerolineaceae, Norank_f__norank_o__PeM15, and Caldisericum. The relative abundance of these microorganisms was remarkably differed between the two groups, which partly caused the difference in nitrogen and phosphorus transformation among overlying water, interstitial water, and sediment in the two environments. PRACTITIONER POINTS: The concentration of N and P changed greatly in the first 20-30 days. AAN and NH4 + -N in sediments had greater concentration variation in contrast group. In two groups, TP, DTP, and DRP of water decreased, and TP of sediment increased. Microbe related to the transformation of N and P differed between the two groups.


Assuntos
Microbiota , Poluentes Químicos da Água , Esgotos , Fósforo/análise , Nitrogênio/análise , Sedimentos Geológicos/química , Poluentes Químicos da Água/química , Água , China
2.
Water Environ Res ; 96(1): e10976, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225832

RESUMO

In this work, the transformation law of nitrogen in sediment-water system under different flow rates and wastewater concentrations were investigated in a simulated sewage pipeline system. Results showed that the different flow rates and wastewater concentrations in the pipeline caused differences in microbial community in sediments and nitrogen transformation. When the flow rate increased from 0.05 to 0.2 m/s, the scouring effect was enhanced, resulting in higher concentrations of NH4 + -N and NO3 - -N in the overlying water. At 0.2 m/s, the relative abundance of Clostridium_sensu_stricto_1 in sediments was higher, resulting in a greater conversion of amino acid nitrogen (AAN) to NH4 + -N. Meanwhile, many denitrifying bacteria (Trichococcus, Dechloromonas, norank_f__norank_o__Gaiellales, Thiobacillus) had high relative abundance in the sediments, and the denitrification process was common. When the wastewater concentration was high, the nitrification reaction was great in overlying and interstitial water. Moreover, the ammoniation process was great in the sediments, and the variation flux of AAN was large (remarkably reduced). PRACTITIONER POINTS: AAN transformed to NH4 + -N in sediment under different flow rate and concentration. Scouring was enhanced at 0.2 m/s, increasing nitrogen contents in overlying water. Difference in microbial community led to more AAN conversion to NH4 + -N at 0.2 m/s. The ammoniation process was greater in sediment at a high concentration of sewage. NH4 + -N migrated from overlying water to sediment at a high concentration of sewage.


Assuntos
Esgotos , Águas Residuárias , Desnitrificação , Água , Nitrogênio/análise , Nitrificação , Bactérias
3.
Environ Pollut ; 337: 122596, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37748641

RESUMO

Transformation of sulfur in sewage pipeline was affected by water flow, and the transformation laws at different locations in the sediment-water system were different. This work studied the changes of sulfur in sediments, sewage, and upper space of the sewage pipeline, analyzed the differences in microbial community under different hydraulic retention time (HRT) and depth, and focused on the transformation law of sulfur. Results showed that sulfate and sulfide concentrations in sewage were higher than those in sediments under anaerobic conditions. Moreover, sulfate and sulfide concentrations in sediments decreased with depth. When HRT decreased from 3 h to 1 h, H2S concentration increased evidently, whereas sulfate concentration decreased in the sewage and sediment, and sulfide concentration increased in sewage and surface sediment. Those differences were related to the relative abundances of the two microbial communities. The relative abundances of sulfate-reducing bacteria (SRB), such as Desulfobacter, Desulfovibrio, and Desulfomicrobium, were higher in surface sediment. Correspondingly, those of Thiobacillus, Bacillus, and other sulfur-oxidizing bacteria (SOB) and Smithella were higher in deep sediment. The decrease of HRT might worsen the mass transfer effect of dissolved oxygen, thereby increasing the production rate of sulfur and causing H2S to easily escape from sewage.


Assuntos
Esgotos , Água , Esgotos/microbiologia , Enxofre , Sulfetos , Sulfatos , Oxirredução
4.
Huan Jing Ke Xue ; 39(6): 2963-2970, 2018 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965656

RESUMO

The emissions characteristics of 16 kinds of polycyclic aromatic hydrocarbons (PAHs) in ambient air during the waste tire retreading process (open-air storage, mixing, vulcanization, and grinding processes) and in workers' dormitory were analyzed. In addition, the occupational health risk of the workers was evaluated. Results showed that PAHs were detected in all retreading processes and in the workers' dormitory. The highest concentration site was the mixing process, followed by open-air storage and vulcanization process. The lowest concentration point was in the grinding process. The average concentration of PAHs in the workers' dormitory was 11.1 ng·m-3. The PAHs at all sampling points were largely phenanthrene (Phe), fluoranthene (Flu), anthracene (Ant), and pyrene (Pry), which also had a stronger linear correlation with the total PAH concentration. An analysis of the benzene rings showed that three ring and four ring were the majority, while two ring, five ring, and six ring components accounted for less than 10%. Results of the possible influencing factors of the PAHs revealed that the open-air storage and dormitory might be affected by a combustion source, but the mixing, vulcanization, and grinding processes might be affected by rubber oil. The principal component analysis (PCA) and cluster analysis showed that the spatial location of all sites would significantly influence the distribution of PAHs during the tire retreading process. The health risk assessment showed that occupational workers had a lower risk of lifelong cancer, and there was little influence on life expectancy.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Exposição Ocupacional/análise , Hidrocarbonetos Policíclicos Aromáticos/efeitos adversos , Reciclagem , Resíduos Sólidos , Monitoramento Ambiental , Humanos , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...